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Abstract: Thig Paper explores the potential of using artificial neyrg) networks to

predict the ultimate moment capacity of steel-concrete Compasite beam with metal deck
slab. Basic information on artificial neura} etworks and parameters suitable for analysig
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1- Introduction:-

Composite construction using steel stec] and  concrete  are Joined by

and conerete has beer; used since the early
1920 s. It gained wide spread yse in
bridges in the 1950 5 and in buildings jn
the 1950 5 [1]. In Composite beams, the

mechanical connect; ons, the most popular
form being welded headed shear studs,
The shear ghugs are welded 1o the top
flange of stee! beam 1o transfer shear and
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normal forces between the two
thereby
composite action. A compoesite beam
whick is shown in Fig{l) has greater
strength and stiffness than if the steel and

concrete behaviows independently [2]. The

components, sustaining  the

concrete slab may be solid as shown in
Fig{l a) or with metal deck known as
"ribbed slab" as shown in Fig.(l1.b) [2L
Because of the advantages of the ribbed
slab it becomes common wused on
construction. Nowadays approximately
60% of all new multi-story bailding and
bridge in the UK nsed metal deck slab in
construction [4].

The ribbed slab consist of light-
gage, tibbed metal deck forms which
ineract with stmctural concrete topping as
a composite unit to resist floor loads
Fig.(2). Special embossments, dimples or
lugs cold-rolled into the decking increase
bond and act as shear connectors. Uplidt is
prevented either by the shape of the profile
or by inclining the lugs to the vertical in
opposite directions, on the two sides of the
rib. It is usnal practice to design the slab as
simply supported beam, for the ultimate
limit state {with the metal decking acting
as reinforcement steel in the span
direction), even though the siab and the
decking may be continuous over the floor
bearmns. The slab is usually provided with
square mesh steel reinforcement at, or

above, mid depth of the slab to minimize
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cracking due to shrinkage and temperature
effects and to help distribute concentrated
Loads,

The thickness of metal deck plate element
usually various from 0.83 mm to 2.51 mm,
so metal deck slab is economic which very
thin decking is used. The effects of
corrosion on steel sheets about 2 mm thick
are more sever than on thicker sections, so
the material is vsually galvanized, There is
evidence that the galvanizing process can
increase the yield swength of steel sheet
by as much as 20% [4].
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Fig.(1) Composite beam

b- composite beam with metal deck slab

g~ composite beam with solid concrete slab

The advantage of the metal deck slab
system is the elimination of the formwork,
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increase in speed of construction, act as
slab reinforcement, save up till 30%
concrete material, accommodate service
ducks, and ease (ransportation and
installation. Also, it acts as a diaphragm to
help stabilize the steel skeleton by

inteerating all members inte a svstem.
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Fig.(2) Types of meta] deck slab

2- Design of composite Beam
with Ribbed Slab:-
For design putpose, a single steel

beam is assumned 1o act compesitely with
an effective width of conerete slab, which
is limited by the influence of shear lug.
According to AISC the procedure for
calculation ultimate moment capacily
based on rectangular stress block for both
full and partial interaction. This procedure
gives three equations for the ultimate
moment capacity, based on the location of
plastic neutral axis (PNA). When the PNA
is in steel web fhe ultimate moment

capacity 1s given by:
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M=M—AC/P o) Myt Ce v {1

where; M, steel section plastic moment,
C: compressive force in concrete siab, Py
web yield force, M. web plastic moment,
e: distance from center of steel section to
the center of compressive stress block in

the slab. The force C is given by:

C=min{C", T, 8] wreerevreennn. (2}
C'=0.851. bt e (B
T=Asfy e (4)
S=NQ e (3)

where, f.: cylinder compressive strength of
concrete, b: width of concrete slab, t
thickness of concrete slab, A area of steel
beam, f,: yielding strength of stecl beam,
N- number of connectors over half span
length, Q: shear capacity of one connector.
The distance ¢ is given by:
E=0.5d+h+te-0.5a  oeinniinn (6)
where: d: depth of sieel section, i slab
thickness above the steel deck, a: depth of
compressive stress block, hy: depth of steel
deck.

Many research programs, both
experimental and analytical have led to an
undersianding of the Tbehaviour of
composits beams with metal deck slab and
evaluating of the ultimate moment
capacity of them. These research programs
were based on mathematical models which
are complex for practical use. In this paper
an attempl is made to use an alternative
approach known as Arbficial Meural

Network in which no mathemnatical model

fan
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is required to analyse composile beam
with metal deck slab.

An artificial neura! network has
found wide application in all fields of
sctence including structural engineering.
The first application of neural network in
structural engineering goes back ouly to

the end 1980. Since then wide range of

application have emerged. Vanluchen and

S 119907 3] used neural network to

model simple reinforced concrete beam
hehaviour subject to bending moment.
Jankins [1997] [6] applied a neural
network based method to the approximate
analysis of gnillage structure. (Guang and
Wang [2000] [7] used artificial neural
network to predict thc compressive
strength of concrete. Hadi {2002] [8) using
neural network to design of reinforced
concrete bearm. Pathak and Gupta [2000]
[9] used neural networks for preliminary

design of tubular girder bridge deck.
3- Artificial Neural Network
(ANN):-

Neural networks are problem
solving programs modeled on the human
brain. Neural network technology mimics
the brain's own problem solving process.
Similar to how humens apply knowledge
gained from past experiencc to npew
problems or situations. A neural network
takes previously solved examples to build

a system of 'neurons' that make new
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decisions, classification, and forecasts
[10).

Meoural networks are networks of
many simple processes which are called
units, nodes, or neurons, with dense
parallel interconnections. The connections
between the neurons are called synapses or
weight, Each neuron receives weighted
input  from  other neurons  and
communicates its outputs to other neurons
by using an aciivation function, Thus,
information 18 represented by massive
cross-weighted  interconnections. Neural
networks might be single or mulilayer.
The connection weights of the neural
network are adjusted through the training
process, while the training effect is
referted to as Jearning. Training of neural
networks usually involves muodifying
connection weights by means of learning
rule. The leaming process is done by
giving weights and biases computed. In
other words, neurat networks learn from
examples and exhibit some capability for
generalization beyond the training data.
Then, other testing data are used to check
the generalization, The initial weights and
biases joining nodes of an input layer.
hidden layer, and an output laver are
commonly  assigned randomly.  The
weights and biases are changed for the
output of networks to match required data

values. As input data are passed through

hidden layer, (tansigmoid, logsigmoid,
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purelin} activation functions arc generally
used. Figure (3)  present simple
architectural layout of the backpropagation
networks that consist of an input layer, one
hidden layer, an output layer, and
connections between them,

The corresponding architecture (or
the backpropagation learming incorporates
both the forward and backward phases of
the computations involved in the learning
process. The learning mechanism of the
backpropagation networks is a generalized
delta rule that performs a gradient descent
on the error space to mimimize the total
error between the calculated and the
desired one of an output layer during
modification o connection  weight, In
other words, # least mean square error is
carried out to find the walues ol the
connection weights that minimize the errar
function by using Resilient
backpropagation method.
Network-Based

Modeling of Ultimate Moment

4- Neural
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Capacity of Composite Beam
with Metal Deck Slab

In this study, & Resilient
backpropagation neural network was used
to product the ultimate moment capacity of
composite beam with metal deck slab.
During the process of learning the mean
square error (MSE) is monitored  the
network instantaneously to achieve botter
understanding of the network performance
[11]. Details on the establishment of neural
network models for composite beam. a
longwith sources of the dat that are used

in development, are described below,

5.Generation of Data and

System Model:-

In general, a good traning data set
should include comprehensive information
ahout the characteristics of matenal
behaviour. In this study, the experimental
data include 90 results, which are taken
from the test curried out by Grant
etal [13],Robinson and Wallace [14],

output - o desired

value valuoe

‘i

-
-

L)

Forward single propapation

Rack ward error propagation

Fig.(3) Neural Network Architecture (with smgle hidden layer)
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Fisher [13], Seek et al. [16], Errera (7.
Fulong and Henderson (18}, Allan
etal.[19], Jones [20], Lacap 121}, Robinson
[22], Juyas and Hosain [23], and Gibbings
stal. (241, A mong the collected data 75
celected randomly are used a3 raining
data, and the remaining 15 are regarded as
testing data. _

From the previous studies eight
major variables are adopted to medel the
pehaviour of composite  boam. These
wuriables are as follows:-

b, congrete slab width.

t.. concrete slab depth.

f.. cylinder compressive sirength  of
CONCIete.

;- moment of inettia of steel section.

f,: ylelding strength of steel section.

S: connectors strength.

h, steel deck height.

wi: steel deck width,

Ga the input layer of the neural network
consists of eight processing nodes {uniis)
representing these gight variables, and the
output  layer includes one neuroh
representing the ultimate moment capacity
of beams.

6- Training and Testing of
Network:

As mentioned earlier, the network
configuration  1s defined in terms of
number, size, nodal properiies, ect. of the

inputioutput  and intermcdiate  hidden
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layers, once the ipput and output ¢
decided to cater the present investigation
requirements, the task of selecting 2
suitable configuration has been taken up-
In this swdy, the network configuration
was  arrived  affer watching  the
performance of different configurations.
Then, leaming parameters Wwete changed
and learning process Were repeated. In
addition, to aveid over-iraining  the
convergence criterion adopted in this stedy
depends on whether the MBE of testing
data has reached its mimmum. Before the
peural networks are trained, to avoid the
slow rale of learning near the end points of
the tange, the input and output data were
scaled into the interval {-1,1] by using the

minimum and AT

method
{ pretonmx). After a number of trail, the
values of the network paramerers
considered by this study are as follows:
Number of hidden layers= 2
Number of units in first idden layer=$
Number of units in second hidden layer= 6
Training cycles= 500

The MSE, as stated previously is
adapted to provide a measure of the output
nerwork accuracy. For the above network
the MSE for training and testing are
0.0015, 0.0021 regpectively. Figure (4)
shows convergence history of this network

for both training and testing data.
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Fig.(4) Convergence history of network

7- Discussion and Comparison
of Prediction Models:-

To compare the neural network
results with other well-known existing
models, the same training and testing data
are uged lo calculate the ultimate moment
capacity of composite beams. Regarding
all 90 beams the measured ultimate
moment capacities are plotted against the
calculated values using the ANN and
AISC models as shown in Fig.(3) lor
training data and Fig.(6) for testing data.

To illustrate the overall trend of
correlation, the thecretical
MoM~1 (where M.
moment, M. is calculated moment) is

drawn in Figs.(4) and (5} alongwith the

line with

is experimental

data points. The nearer the points gather
around the diagonal line, the better are the
predicted values. Figures (5) and (9)
clearly show that the least scater of data
around the diagonal line confirms the fact

that ANN based meodel 15 an excellent
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predictor for the value of ultimate M. For
comparison purpese, the values of MSE
and R (where R is correlation coefficient)
of the training and testing results for the
models {ANN and AISC) are also listed in
Tabile (1).

=R

M5E=12(x,—y,]1 SUUURRRRRON ¢ .)

1=1

fear

PSR (A
k= r::l e (9
1l|]Z{JV, —y Y -

13l

=il =

1 .
fng:!.-,y ng.ﬂ

where, ¢ actual value, ¥, predicted value,

e {10

n: number of values, £ mean of actual
values, 3: mean of p@ictw values.

It can be seen that ANN model
gives the srmallest MSE and the Jargest R
for both training and testing data. In
addition, the two prediction models have
been compared by means of the average
value (AVG), Standard deviation (STD),
and coefficient of variation {COV} of the
ratic of MyM.. Table (2) shows that for
the ratic of MJM. the ANN model
possesses the least COV value of 0.0012
(with AVG= 1.005 and STD=0.035) and
0.0014 (with AVG=1.01 and 8TD=0.06 )
for training and testing set respectively.

This proves that the prediction of
ANN mode! is better than those of the
AISC maodel.
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Table (1) summary of values of MSE and R
MSE 34
Models e -
Training |  Testing Traming Testing
ANN 0.0015 0.6021 (992 (.980
ASIC 0.0083 00098 0.970 {0,955
" Table {2) smnﬁlary of values of AVG, 81D and COV

P AVG STD cov
Models ; -
Training Testing Training Testing Training Testing
ANN 1.6050 1.010 0.0350 " 0,060 0.0012 0.0014
AISC 1.1035 1.135 00917 | 0124 0.0832 0.1093
—_— i
i - r :
B0l @ ANN - | e ann ]
T:égmlmnj-u&uhlmmn ; ‘ ap| —— Wieatculation)=M{exprimertal
o ¢ * AISC o
L 300} |
|
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Fig.{5) Comparison of ultimate strength of composite

beam obtained by varicus models for training data

Also the above network was used
to stud the effect of varies input parameter

on the behaviour of composite beam with
ribbed slab,
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Fig.(6) Comparison of ullimate strength of comp

osite

beam obtained by various models for lesting data

Figure (7) shows the varation of
ultimate moment capacity of composite
beam with concrete slab compressive
strength. For an increase in compressive
strength from 18 to 32 MPa, the increase
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in the ultimate moment capacity was 12%.

Figure {8) shows the variation of
uttimate moment capacity with steel beam
yielding stress, fy. This figure shows that
an increase in yielding stress from 230 to
420 MPa, leads to increase in the ultimate
moment capacity of 36%.

Slab dimensions also affect the
beam behaviour, The slab thickness has a
marked effect on strength but slab width is
less effective. Figure (9) illustrates the
¢ffect of slab thickness on the ultimate
moment capacity. Beam with deeper
slab have higher ultimate

A small increase in ultimate

concrete

capacity.
moment capacity of composite beams
occurs with the increase in width of
concrete slab. This can be geen in Fig.(10).

Figure (11} shows how the ultimate
moment capacity of beam wvaries with
connector strength (degree of interaction).
The ultimate mornent capacity and
connector strength are nonlinearly related.
The increase in connecter sirength causes
increase of witimate capacity, for example
at 50% composite action, the ultimate
strength is about 72% of fully composite
nltimate strength. But with increase of
connecter strength (depree of interaction)
greater than 1.25 the inerease in the

ultimate moment capacity is smail,

‘Basrzh Joumal for Engineering Science/No.2 /2010
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Fig(7) Variation of ultimate moment capacity with
variation of cylinder concrete compressive strength

Fig.(8) Variation of ultimate moment capacity with
variation of yielding sirenpth of steel section
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Fig,(9) Variation of ultimate moment capacity with
variation of concrete slab thickness
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Fig.(10) Variation of ultimate morment capacity with

variation of concrete slab width

9- Conclusions:-

In this study it is found that the

neural network model is very effective in
the analysis of composite beams with

metal deck slab with incomplete
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Fig.(11) Veriation of ultimate moment capacity with

variation of connectors strength

between concrete slab and stee] beam. The
configuration 8-6 nodes in (first and
second hidden layer) is proved to be VEry

efficient for

predicting the ultimate
stength of such system which gives
for both
fraining and testing data, The neural

network model is proved to give results

minimum mean square error

more accurate than those given by AISC
method, The proposed network used to
explor the effect of wvaration of input
parameter on behaviour of composite
beam with ribbed slab, The ultimate
strength increases by an amount of 12%
with increase of compressive strength from
18 10 32, The an increase in yielding stress
from 230 to 420 MPa, leads to increase in
the ultimate moment capacity of 36%,

Slab dimensions also affect the




marked effect on strength but slab widih s

less effective. The increase in connecier

strength causes increase of ultimate

moment capacity, for example at 50%

composite action, the ultimate strength is

about 72% of fully composite ultimate
strength,
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Notation
ANN astificial neural network
A, area of stecl beam
AVO Average values
b, conerete slab width

T T TR T




cov

compressive force in Wi
congeete slab

coefficient of variation Wi
depth of steel beam

distance from center of Wy
steel to the center of ¥i

compressive siress ¥
block in the slab

error between the 7
calculated and desired

value By
cylinder compressive

strength of concrete

vielding strength of

steel section

metal deck height

moment of inertia of

steel section

munber of connectors

calculated moment

experimental moment

steel section plastic

moment

stecl web plastic

moment

mean Sguare error

web vield force

correlation coefficient

connector strength
standard deviation
covcrete slab thickness
actuul value

mean of actual values
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weights between the
input and hidden layer
weights between the
hidden and cutput layer
steel deck widih
predicted value

mean of predicted
values

biases for the hidden
layer

biases for output layer




